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Introduction
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Identical

z1 ← a2.
z1 ← a1 ∧ b0.
b1 ← a2.
b0 ← a0.
. . .
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General Definitions Semantics

Dynamical Semantics
A Boolean network is a (syntactical) structure.
It must be interpreted with a semantics to run.

a b f(a) := not b.
f(b) := not a.

Asynchronous General
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00

01 10

11

Synchronous

00

01 10

11

Synchronous: all variables are updated
Asynchronous: only one variable is updated
General: any number of variables can be updated
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General Definitions Semantics

Definition of Semantics
In a given state, among the possible changes permited by the network
(structure), the semantics select which ones to apply and how to combine
them.

000 010
Applicable

Rules
Applied
Rules

Network Semantics
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General Definitions Logic Rules

Logic Rules

LFIT learns a logic program, which is a set of logic rules.
It is an alternative representation of biological networks.

a1 ← a0, b0, c2.
The network states that if a and b are at level 0 and c is at level 2, then a
can change its value to 1.

a1 ← c2.
Whenever c is at level 2, a can change its value to 1.

a1 ← .
a can change its value to 1 anytime.

When will a take value 1? This depends on the semantics
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a1 ← a0, b0, c2.
The network states that if a and b are at level 0 and c is at level 2, then a
can change its value to 1.

a1 ← c2.
Whenever c is at level 2, a can change its value to 1.

a1 ← .
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Learning From Interpretation Transition (LFIT)

Learning From Interpretation
Transition (LFIT)
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Learning From Interpretation Transition (LFIT) Intuition

Learning Algorithm Intuition: Classification Problem
Learn applicable rules: conditions so that a variable can take a certain
value in next state.
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example
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Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when a0 or b1 is present.

a0 ← a0. a0 ← b1.
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Learning From Interpretation Transition (LFIT) GULA

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s1 → s2)

Output: a logic program that respects:
Consistency: the program allows no negative examples
Realization: the program covers all positive examples
Completeness: the program covers all the state space
Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.
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Learning From Interpretation Transition (LFIT) GULA

Minimal refinements
Suppose: dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}
and the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
From state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:
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Minimal refinements
Suppose: dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}
and the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
From state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a1 ← a0, c2.
a1 ← b1, c2.
a1 ← c2, c0.
a1 ← c2, c1.

a1 ← b1.
(No change)
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Minimal refinements
Suppose: dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}
and the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
From state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a1 ← a0, c2.
a1 ← b1, c2.

a1 ← b1.
(More general)
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Learning From Interpretation Transition (LFIT) GULA

Minimal refinements
Suppose: dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}
and the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
From state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a1 ← a0, c2. a1 ← b1.
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Learning From Interpretation Transition (LFIT) GULA

Results
Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue.
Learning any memory-less discrete semantics for dynamical systems
represented by logic programs. Machine Learning 111, Springer.
November 2021. https://doi.org/10.1007/s10994-021-06105-4

Allows to learn the network (structure of the model)
Independent of the semantics
(characterization of applicable memoryless semantics)

Nice in theory, but in practice?
Exponential complexity → How to handle big datasets?
(many transitions, many variables)
Exact learning → How to handle noise?
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Two Heuristic on LFIT Weighted Likeliness/Unlikeliness Rules

Weighted Likeliness/Unlikeliness Rules

Use the algorithm twice to learn two logic programs:
▶ likeliness rules: what is possible
▶ unlikeliness rules: what is impossible

Weight each rule by the number of observations it matches

Statistical overlay ⇒ usable on noisy datasets

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

...

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

...
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Two Heuristic on LFIT Weighted Likeliness/Unlikeliness Rules

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
Compare weights of applicable likeliness/unlikeliness rules
Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) 7→ (P,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)
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Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) 7→ (P,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

predict(a1, ⟨a1, b1, c0⟩) = (0.75, ((15, a1 ← b0), (5, a1 ← c0))) ⇒ Likely
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predict(a0, ⟨a1, b1, c0⟩) = (0.09, ((3, a0 ← b1), (30, a0 ← c1))) ⇒ Unlikely

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 15 / 34



Two Heuristic on LFIT Weighted Likeliness/Unlikeliness Rules

Prediction power
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3 variables 9 variables

Training data = X% of transitions
Tested against unseen states (not in the training data)
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Two Heuristic on LFIT PRIDE: Greedy Algorithm

PRIDE: Polynomial Alternative to GULA

GULA: Exponential complexity in the number of variables

PRIDE: Greedy version of GULA that only keeps the first compatible
minimal refinement ⇒ subset of rules

Consistency: the program allows no negative examples
Realization: the program covers all positive examples
Completeness: the program covers all the state space
Minimality of the rules (most general conditions)

...And the results depends on the ordering of variables

Polynomial complexity ⇒ usable on large datasets
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Application: Dynamics of Marine Phytoplankton
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Application: Dynamics of Marine Phytoplankton

Phytoplankton Blooms
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Application: Dynamics of Marine Phytoplankton

SRN Dataset
J. Mar. Sci. Eng. 2022, 10, 174 5 of 31
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Figure 1. Map of the stations used in the study.

2.2. Community Diversity and Structure

Phytoplankton community diversity and equitability was estimated with the Shannon
diversity index (H�) [60] and Pielou’s evenness (J�) [61]. The indices were calculated with
the diversity function available in the R vegan package [62]. The Shannon diversity index
was calculated from the equation:

H� = −∑ pi ln(pi) (1)

where pi is the proportion of individuals for the ith taxonomic units. For an easier inter-
pretation, the Shannon diversity index was converted into its numerical equivalent (also
called the equivalent number of species) using the Hill (1973) formula:

H = exp(H) (2)

Pielou’s evenness was calculated as:

J� = H�/ ln(S) (3)

where S is the total number of species. J� ranges from 0 to 1 with zero corresponding to
no evenness and 1 meaning complete evenness. In addition to diversity and equitability,
the community total number of taxonomic units S was also used as the structure parameters
of the community.

All statistical analysis was performed with the free statistical software R [63].

2.3. Spatial–Temporal Variation

Investigation into the temporal and/or spatial effect of the environmental conditions
and community structure was done by performing a permutational multivariate analysis
of variance (PERMANOVA, [64]) on each dataset. PERMANOVAs are semi-parametric
methods based on F-statistic estimation to support the partition of variance. The methods
couple the robust statistical properties of rank-based nonparametric methods, with the
possibility to test the effects of several factor interactions without the necessity for data
normality [64]. PERMANOVAs performed in the study were based on Euclidean distance
matrix and significantly tested with 9999 permutations. PERMANOVAs were done with the
function adonis2 available in the R vegan package [62]. The sampling stations were used
as an explanatory factor for testing the spatial effect of datasets. For environmental and
community variables, the temporal factors used were the months and years of the samples
at which they were collected. Two temporal factors enabled the testing of monthly seasonal
and inter-annual changes as a temporal effect. The month, the year and the stations factors
were tested separately (3 factors), paired (3 different pairs of factors) and combined (all

Karasiewicz Stephane, Lefebvre Alain (2022). Environmental Impact on Harmful Species

Pseudo-nitzschia spp. and Phaeocystis globosa Phenology and Niche. Journal Of Marine

Science And Engineering. 10 (2). 174 (31p.). https://doi.org/10.3390/jmse10020174

https://www.seanoe.org/data/00397/50832/
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Application: Dynamics of Marine Phytoplankton

Contents of the SRN Dataset

1992–2023
≃ 3000 data points

Sampling location Sampling date Taxon/Parameter Value Sampling depth
001-P-015 1992-05-18 CHLOROA 6.0 Surface (0-1m)
006-P-001 2019-12-02 Chaetoceros 1000.0 Surface (0-1m)
002-P-007 1994-05-25 Pleurosigma 100.0 Surface (0-1m)
002-P-030 2005-10-19 SALI 34.83 Surface (0-1m)
006-P-007 2015-09-28 Guinardia delicatula 11400.0 Surface (0-1m)

...
...

...
...

...

Environmental variables (7) Phytoplankton species (12)
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Application: Dynamics of Marine Phytoplankton

Learning from Noisy Time Series

PhytoplanktonPhytoplankton

Time series
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Application: Dynamics of Marine Phytoplankton

Learning from Noisy Time Series

PhytoplanktonPhytoplankton

Time series

Led1 ← SIOH0 ∧ TEMP1 ∧ TURB0.
Led1 ← SIOH0 ∧ SALI1
Led0 ← PO40 ∧ TEMP1 ∧ TURB1.
Led0 ← CHLOROA0 ∧ PO41.
Led1 ← TEMP0 ∧ SALI0
Led1 ← PO41 ∧ TEMP0 ∧ TURB1.

Logic program
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Application: Dynamics of Marine Phytoplankton

Learning from Noisy Time Series

PhytoplanktonPhytoplankton

Time series

Led1 ← SIOH0 ∧ TEMP1 ∧ TURB0.
Led1 ← SIOH0 ∧ SALI1
Led0 ← PO40 ∧ TEMP1 ∧ TURB1.
Led0 ← CHLOROA0 ∧ PO41.
Led1 ← TEMP0 ∧ SALI0
Led1 ← PO41 ∧ TEMP0 ∧ TURB1.

Logic program
Influence graph
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Application: Dynamics of Marine Phytoplankton

Step 1: Pre-Processing
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Application: Dynamics of Marine Phytoplankton

Step 2: Discretization
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Application: Dynamics of Marine Phytoplankton

Step 2: Discretization
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Application: Dynamics of Marine Phytoplankton

Step 3: Applying LFIT

...
Led1 ← SIOH0 ∧ TEMP1 ∧ TURB0.

Led1 ← SIOH0 ∧ SALI1
Led0 ← PO40 ∧ TEMP1 ∧ TURB1.

Led0 ← CHLOROA0 ∧ PO41.

Led1 ← TEMP0 ∧ SALI0
Led1 ← PO41 ∧ TEMP0 ∧ TURB1.

...

Run time = 2.35s (PRIDE)
≃ 3500 rules
Model accuracy: depends on the discretization choices! between 67%
and 77%
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Application: Dynamics of Marine Phytoplankton

Step 4: Compute Global Influences

Process: Search and count patterns in rules that characterize an
activation/inhibition
Hypotheses: Monotonous influences & same threshold for all variables
Result: Score [−1; +1] between each pair of variables (no threshold)

Influences on phytoplankton specie Led:

Variable Positive Negative Global
PO4 +0 −58 −0.36
SALI +71 −4 +0.42
CHLOROA +84 −22 +0.39
SIOH +3 −161 −0.98
NH4 +25 −5 +0.12
TEMP +106 −5 +0.63
TURB +10 −87 −0.48

global_influence(PO4→ Led) =
+0 + (−58)

161
= −0.36
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Application: Dynamics of Marine Phytoplankton

Influence Graph
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Conclusion
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Conclusion

Conclusion

Learn the network with LFIT (theory)
Heuristics to tackle real data (practice)
Application to phytoplankton

Outlooks:
Quatify how many rules are “missed” by PRIDE
Integrate biological knowledge to improve learning
Improve the Biological network inference
...
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