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General Definitions

General Definitions
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(eLETE NPT Semantics

Dynamical Semantics

A Boolean network is a (syntactical) structure.
It must be interpreted with a semantics to run.

@/_\/ f(a) := not b.
f(b) := not a.
('S
00 00 00
A A
01 v 10 01 10 01 v 10
A 1 o O 1 o U 11 @4
Synchronous Asynchronous Genera
@ Synchronous: all variables are updated
@ Asynchronous: only one variable is updated
@ General: any number of variables can be updated
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(eLETE NPT Semantics

Definition of Semantics

In a given state, among the possible changes permited by the network
(structure), the semantics select which ones to apply and how to combine

them.
000 Applicable [ Applied
Rules Rules
Network Semantics
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sl
Logic Rules

LFIT learns a logic program, which is a set of logic rules.
It is an alternative representation of biological networks.
a; < ap, bo, .
The network states that if a and b are at level 0 and c is at level 2, then a
can change its value to 1.

a] < O.
Whenever c is at level 2, a can change its value to 1.
al <.

a can change its value to 1 anytime.
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Logic Rules

LFIT learns a logic program, which is a set of logic rules.
It is an alternative representation of biological networks.

a; < ap, bo, Co.

The network states that if a and b are at level 0 and c is at level 2, then a
can change its value to 1.

a] < O.

Whenever c is at level 2, a can change its value to 1.
ap <.

a can change its value to 1 anytime.

When will a take value 1?7 This depends on the semantics
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Learning From Interpretation

Transition (LFIT)
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Learning From Interpretation Transition (LFIT) BINEHElh]

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain

value in next state.

Observations

Positive Negative Positive Negative
example example example example

Equivalent to a classification problem: What is a typical state where a

can take value 0 in the next state ? Here: when ag or by is present.
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Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain

value in next state.

Observations

Positive Negative Positive Negative
example example example example

Equivalent to a classification problem: What is a typical state where a

can take value 0 in the next state ? Here: when ag or by is present.

ap < 4p.
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GULA
Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s; — )

Output: a logic program that respects:
o Consistency: the program allows no negative examples
@ Realization: the program covers all positive examples
@ Completeness: the program covers all the state space

e Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.
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Learning From Interpretation Transition (LFIT) eVIN:§

Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}
and the current program contains the following rules regarding a;:

ai + G. ap + b.
From state (aj, by, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:
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Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}
and the current program contains the following rules regarding a;:

ai + G. ap + b.
From state (aj, by, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a; < ap, ¢. ap + b;.
a; bl; . (No change)
a; < G, Q.
a; < O, (1.
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Learning From Interpretation Transition (LFIT) eVIN:§

Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}
and the current program contains the following rules regarding a;:

ai + G. ap + b.
From state (aj, by, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a; < ap, ¢. aip + b;.
a; bl; . (More general)
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Learning From Interpretation Transition (LFIT) eVIN:§

Results

Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue.
Learning any memory-less discrete semantics for dynamical systems
represented by logic programs. Machine Learning 111, Springer.
November 2021. https://doi.org/10.1007/s10994-021-06105-4

@ Allows to learn the network (structure of the model)
@ Independent of the semantics
(characterization of applicable memoryless semantics)

Nice in theory, but in practice?

e Exponential complexity — How to handle big datasets?
(many transitions, many variables)

o Exact learning — How to handle noise?
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Two Heuristic on LFIT

Two Heuristic on LFIT
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Weighted Likeliness/Unlikeliness Rules
Weighted Likeliness/Unlikeliness Rules

@ Use the algorithm twice to learn two logic programs:

» likeliness rules: what is possible
» unlikeliness rules: what is impossible

@ Weight each rule by the number of observations it matches

Statistical overlay = usable on noisy datasets

Likeliness rules Unlikeliness rules
(3, ap < bl) (30, ap < C1)

(15, a1 < bp) (5,a1 + o)
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Weighted Likeliness/Unlikeliness Rules
Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
e Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, apg < bl) (30, apg < C1)
(15, ay < bo) (5, ay <« Co)
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Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
e Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, apg < bl) (30, apg < C1)
(15, a) < bo) (5, a) < Co)

predict(ai, (a1, b1, co)) = (0.75, ((15, a1 < bo),(5,a1 < p))) = Likely
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Weighted Likeliness/Unlikeliness Rules
Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
e Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3,30 — bl) (30,30 — C1)
(15, ay < bo) (5, ay <« Co)

predict(as, (a1, b1, co)) = (0.

0 757 ((157‘31 — b0)7 (57 al < Co))) = leely
predict(ao, (a1, b1, co)) = (0.09, ((3, a0 < b1),(30,a0 < c1))) = Unlikely
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Two Heuristic on LFIT

Prediction power

synehronous 3 variables synchronous 9 variables
10 10 ——
—— ————
-
_ L]
08 08 =
2os o6
7 T ettt e — i e— — — —
foa Zoa
02 02
Method Method
= gua = gu
B boseline_random . boseline_random
B boseline_olways 0.0 B boseline_aiways 0.0
00 - B boseline_olways 0.5 00 B boseline_aiways 0.5
== boseline_olways 1.0 == boseline_aiways 1.0
1% 2% 4% 8% 16%  24% 3% 0%  48%  S6%  64%  72%  80% % 2% 4% 8% 16%  24% 2%  40%  48%  S6%  64%  T2%  80%
Percent of training data Percent of training data

3 variables 9 variables

Training data = X% of transitions
Tested against unseen states (not in the training data)
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REEElcEe et
PRIDE: Polynomial Alternative to GULA

GULA: Exponential complexity in the number of variables

PRIDE: Greedy version of GULA that only keeps the first compatible
minimal refinement = subset of rules

o Consistency: the program allows no negative examples
@ Realization: the program covers all positive examples
o Completeness—theprogram—covers-al-the statespaee
e Minimality of the rules (most general conditions)

...And the results depends on the ordering of variables

Polynomial complexity = usable on large datasets
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Application: Dynamics of
Marine Phytoplankton
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Application: Dynamics of Marine Phytoplankton

SRN Dataset

Tatitude

Longitude

Karasiewicz Stephane, Lefebvre Alain (2022). Environmental Impact on Harmful Species
Pseudo-nitzschia spp. and Phaeocystis globosa Phenology and Niche. Journal Of Marine
Science And Engineering. 10 (2). 174 (31p.). https://doi.org/10.3390/jmse10020174
https://www.seanoe.org/data/00397/50832/

T 2]


https://doi.org/10.3390/jmse10020174
https://www.seanoe.org/data/00397/50832/

Contents of the SRN Dataset

1992-2023

~ 3000 data points

Sampling location | Sampling date Taxon/Parameter Value Sampling depth
001-P-015 1992-05-18 CHLOROA 6.0 Surface (0-1m)
006-P-001 2019-12-02 Chaetoceros 1000.0 | Surface (0-1m)
002-P-007 1994-05-25 Pleurosigma 100.0 Surface (0-1m)
002-P-030 2005-10-19 SALI 34.83 Surface (0-1m)
006-P-007 2015-09-28 Guinardia delicatula | 11400.0 | Surface (0-1m)

Environmental variables (7) Phytoplankton species (12)
Ty



Application: Dynamics of Marine Phytoplankton

Learning from Noisy Time Series

Phytoplankton

Time series
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Application: Dynamics of Marine Phytoplankton

Learning from Noisy Time Series

Phytoplankton

Time series

Ledy <+ SIOHo A TEMP31 A TURBo.
Ledy < SIOHo N SALK

Ledg <— PO4o N TEMPy A TURBy.
Ledg <— CHLOROAg N PO4;.

Ledy <— TEMPg N SALlg

Ledy <— PO41 N TEMPg N TURBy .

Logic program
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Application: Dynamics of Marine Phytoplankton

Learning from Noisy Time Series

Phytoplankton

Time series

Ledy < SIOHg A TEMPy A TURBq.
Ledy < SIOHg A SALI

Ledo <+ PO4g A TEMPy A TURB;.
Ledo <+ CHLOROAg A PO4;.

Ledy <+ TEMPo A SALlg

Ledy < PO4y A TEMPo A TURB;.

Logic program

Influence graph

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT



Application: Dynamics of Marine Phytoplankton

Step 1: Pre-Processing
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Applicatior

Dynamics of Marine Phytoplankton

Step 1: Pre-Processing
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Step 1: Pre-Processing
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Application: Dynamics of Marine Phytoplankton

Step 2: Discretization

Temperature Dependence of Phytoplankton Growth
|

1.0

o
@

o
o

(T = Tope)?
—— 1) = pope-exp (T2

-=-=- Optimal Temp: 20°C

Growth Rate (p(T))
S
s

o
N

0.0

0 5 10 15 20 25 30 35 40
Temperature (°C)
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Application

Step 2: Discretization

Maxime

Dynamics of Marine Phytoplankton

of Growth vs Di
Chaetoceros danicus Ditylum
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Step 3: Applying LFIT

Led; + SIOHo A TEMP; A TURB,.
Led;  SIOHo A SALI,

Ledy < PO4q A TEMP; A TURB,.
Ledy < CHLOROAG A PO4,.

Led, < TEMPy A SALI

Led; + PO4; A TEMPy A TURB,.

@ Run time = 2.35s (PRIDE)

e ~ 3500 rules

@ Model accuracy: depends on the discretization choices! between 67%
and 77%
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Step 4: Compute Global Influences

Process: Search and count patterns in rules that characterize an
activation/inhibition

Hypotheses: Monotonous influences & same threshold for all variables
Result: Score [—1;+1] between each pair of variables (no threshold)

Influences on phytoplankton specie Led:

Variable | Positive | Negative | Global
P04 +0 —58 —0.36
SALI +71 —4 +0.42
CHLOROA +84 —22 +0.39
SIOH +3 —161 —0.98
NH4 +25 —5 +0.12
TEMP +106 -5 +0.63
TURB +10 —87 —0.48
global _influence(P04 — Led) = —W%(l—.%) = —0.36
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Application: Dynamics of Marine Phytoplankton

Influence Graph
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Conclusion
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Conclusion

Conclusion

@ Learn the network with LFIT (theory)
e Heuristics to tackle real data (practice)

o Application to phytoplankton

Outlooks:
@ Quatify how many rules are “missed” by PRIDE
o Integrate biological knowledge to improve learning
@ Improve the Biological network inference
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