Searching for Phytoplankton Biotic Interactions in the SRN Dataset with LFIT

Maxime Folschette

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

2024-12-09

Journée ADÉM: « Apprentissage à partir de Données d'Écologie Marine »

Outline

[General Definitions](#page-6-0)

- **•** [Semantics](#page-7-0)
- **•** [Logic Rules](#page-9-0)

2 [Learning From Interpretation Transition \(LFIT\)](#page-11-0)

- **o** [Intuition](#page-12-0)
- [GULA](#page-14-0)

[Two Heuristic on LFIT](#page-21-0)

- [Weighted Likeliness/Unlikeliness Rules](#page-22-0)
- [PRIDE: Greedy Algorithm](#page-27-0)

4 [Application: Dynamics of Marine Phytoplankton](#page-28-0)

[Conclusion](#page-44-0)

Introduction

Introduction

[General Definitions](#page-6-0)

Dynamical Semantics

A Boolean network is a (syntactical) structure. It must be interpreted with a semantics to run.

- Synchronous: all variables are updated
- **Asynchronous:** only one variable is updated
- **General:** any number of variables can be updated

Maxime Folschette (CRIStAL) [Phytopl. Interact. in SRN with LFIT](#page-0-0) 2024-12-09 5/34

Definition of Semantics

In a given state, among the possible changes permited by the network (structure), the semantics select which ones to apply and how to combine them.

Logic Rules

LFIT learns a logic program, which is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2.$ The network states that if a and b are at level 0 and c is at level 2, then a can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever c is at level 2, a can change its value to 1.

 $a_1 \leftarrow$. a can change its value to 1 anytime.

Logic Rules

LFIT learns a logic program, which is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2.$ The network states that if a and b are at level 0 and c is at level 2, then a can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever c is at level 2, a can change its value to 1.

 $a_1 \leftarrow$.

a can change its value to 1 anytime.

When will a take value 1? This depends on the semantics

[Learning From Interpretation](#page-11-0) [Transition \(LFIT\)](#page-11-0)

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain value in next state.

Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain value in next state.

Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present.

$$
a_0 \leftarrow a_0. \qquad a_0 \leftarrow b_1.
$$

Presentation of GULA

 $GULA = General$ Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that respects:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$
a_1 \leftarrow c_2. \hspace{1cm} a_1 \leftarrow b_1.
$$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$
a_1 \leftarrow c_2. \hspace{1cm} a_1 \leftarrow b_1.
$$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$
a_1 \leftarrow a_0, c_2.
$$

\n
$$
a_1 \leftarrow b_1, c_2.
$$

\n
$$
a_1 \leftarrow c_2, c_0.
$$

\n
$$
a_1 \leftarrow c_2, c_1.
$$

$$
\begin{array}{l} a_1 \leftarrow b_1. \\ \textup{(No change)} \end{array}
$$

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$
a_1 \leftarrow c_2. \hspace{1cm} a_1 \leftarrow b_1.
$$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$
a_1 \leftarrow a_0, c_2.
$$

\n
$$
a_1 \leftarrow b_1, c_2.
$$

\n
$$
a_1 \leftarrow c_2, c_0.
$$

\n
$$
a_1 \leftarrow c_2, c_1.
$$

$$
a_1 \leftarrow b_1.
$$

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$
a_1 \leftarrow c_2. \hspace{1cm} a_1 \leftarrow b_1.
$$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$
a_1 \leftarrow a_0, c_2.
$$

$$
a_1 \leftarrow b_1, c_2.
$$

$$
a_1 \leftarrow b_1.
$$

(More general)

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$
a_1 \leftarrow c_2. \hspace{1cm} a_1 \leftarrow b_1.
$$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

$$
a_1 \leftarrow a_0, c_2. \qquad a_1 \leftarrow b_1.
$$

Results

Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. <https://doi.org/10.1007/s10994-021-06105-4>

- Allows to learn the network (structure of the model)
- Independent of the semantics (characterization of applicable memoryless semantics)

Nice in theory, but in practice?

- Exponential complexity \rightarrow How to handle big datasets? (many transitions, many variables)
- Exact learning \rightarrow How to handle noise?

[Two Heuristic on LFIT](#page-21-0)

Maxime Folschette (CRIStAL) [Phytopl. Interact. in SRN with LFIT](#page-0-0) 2024-12-09 13/34

Weighted Likeliness/Unlikeliness Rules

• Use the algorithm twice to learn two logic programs:

- \blacktriangleright likeliness rules: what is possible
- \blacktriangleright unlikeliness rules: what is impossible
- Weight each rule by the number of observations it matches

Statistical overlay \Rightarrow usable on noisy datasets

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow **probability** P
- Rules with highest weights \Rightarrow explanation E

predict : (atom, state) \mapsto (P, E)

Likeliness rules $(3, a_0 \leftarrow b_1)$ $(15, a_1 \leftarrow b_0)$

Unlikeliness rules $(30, a_0 \leftarrow c_1)$ $(5, a_1 \leftarrow c_0)$

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow **probability** P
- Rules with highest weights \Rightarrow explanation E

predict : (atom, state) \mapsto (P, E)

predict($a_1, (a_1, b_1, c_0)$) = (0.75, ((15, $a_1 \leftarrow b_0$), (5, $a_1 \leftarrow c_0$))) \Rightarrow Likely

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow **probability** P
- Rules with highest weights \Rightarrow explanation E

predict : (atom, state) \mapsto (P, E)

 $predict(a_1, \langle a_1, b_1, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow$ Likely predict($a_0, \langle a_1, b_1, c_0 \rangle$) = (0.09, ((3, $a_0 \leftarrow b_1$), (30, $a_0 \leftarrow c_1$))) \Rightarrow Unlikely

Prediction power

Training data $=$ X% of transitions Tested against unseen states (not in the training data)

PRIDE: Polynomial Alternative to GULA

GULA: Exponential complexity in the number of variables

PRIDE: Greedy version of GULA that only keeps the first compatible minimal refinement \Rightarrow subset of rules

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- **Completeness:** the program covers all the state space
- Minimality of the rules (most general conditions)

...And the results depends on the ordering of variables

Polynomial complexity \Rightarrow usable on large datasets

[Application: Dynamics of](#page-28-0) [Marine Phytoplankton](#page-28-0)

Phytoplankton Blooms

SRN Dataset *J. Mar. Sci. Eng.* **2022**, *10*, 174 5 of 31

Karasiewicz Stephane, Lefebvre Alain (2022). Environmental Impact on Harmful Species
. Pseudo-nitzschia spp. and Phaeocystis globosa Phenology and Niche. *Journal Of Marine* S cience And Engineering. 10 (2). 174 (31p.). <https://doi.org/10.3390/jmse10020174> <https://www.seanoe.org/data/00397/50832/>

was calculated from the equation:
Maxime Folschette (CRIStAL) [Phytopl. Interact. in SRN with LFIT](#page-0-0) 2024-12-09 20/34

Contents of the SRN Dataset

1992–2023 \simeq 3000 data points

Environmental variables (7) Phytoplankton species (12)

Learning from Noisy Time Series

Time series

Learning from Noisy Time Series

Logic program

Learning from Noisy Time Series

Step 1: Pre-Processing

Step 1: Pre-Processing

Step 1: Pre-Processing

Step 2: Discretization

Step 2: Discretization

Step 2: Discretization

Temperature Dependence of Phytoplankton Growth vs Distribution of Presence of Species

Maxime Folschette (CRIStAL) [Phytopl. Interact. in SRN with LFIT](#page-0-0) 2024-12-09 27/34

Step 3: Applying LFIT

.

```
.
         .
Led<sub>1</sub> ← SIOH<sub>0</sub> \land TEMP<sub>1</sub> \land TURB<sub>0</sub>.
Led_1 \leftarrow SIOH_0 \wedge SALI_1Led_0 \leftarrow PO4_0 \wedge TEMP_1 \wedge TURB_1.
Leđ_0 \leftarrow CHLOROA_0 \wedge PO4_1.
Led_1 \leftarrow \text{TEMP}_0 \wedge \text{SALI}_0Led_1 \leftarrow PO4_1 \wedge TEMP_0 \wedge TURB_1.
        .
        .
        .
```
- Run time $= 2.35s$ (PRIDE)
- $\bullet \simeq 3500$ rules
- \bullet Model accuracy: depends on the discretization choices! between 67% and 77%

Step 4: Compute Global Influences

Process: Search and count patterns in rules that characterize an activation/inhibition

Hypotheses: Monotonous influences & same threshold for all variables Result: Score $[-1; +1]$ between each pair of variables (no threshold)

Influences on phytoplankton specie Led:

$$
\text{global_influence}(\text{PO4}\rightarrow \text{Led})=\frac{+0+(-58)}{161}=-0.36
$$

Influence Graph

[Conclusion](#page-44-0)

Conclusion

- Learn the network with LFIT (theory)
- Heuristics to tackle real data (practice)
- Application to phytoplankton

Outlooks:

- Quatify how many rules are "missed" by PRIDE
- Integrate biological knowledge to improve learning
- Improve the Biological network inference

 \bullet ...

Thanks

Tony RIBEIRO

Omar IKNE

Morgan MAGNIN

Katsumi INOUE

Cédric LHOUSSAINE

Sébastien LEFEBVRE

Madeleine EYRAUD

Bibliography

- About GULA: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. <https://doi.org/10.1007/s10994-021-06105-4>
- pyLFIT Python library: <https://github.com/Tony-sama/pylfit>
- About PRIDE: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Polynomial Algorithm For Learning From Interpretation Transition. Poster at the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. <https://hal.science/hal-03347026v1>
- About the application: Omar Iken, Maxime Folschette and Tony Ribeiro. Automatic Modeling of Dynamical Interactions Within Marine Ecosystems. Poster in the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. <https://hal.science/hal-03347033v1>