Inference of ecological networks and possibilistic dynamics based on Boolean networks from observations and prior knowledge

Loïc Paulevé, Cédric Gaucherel (AMAP, INRAe, CIRAD, Montpellier)

bioRxiv preprint: https://www.biorxiv.org/content/10.1101/2024.07.01.601264v1

Context, general motivation

- From observed (qualitative) change of species abundances, *generate* hypotheses on the underlying ecological network
- Ecological network: trophic (predation) + competition

• Network inference: take into account prior expert knowledge

Approach

Application:

- Protist system with 6 species
- Extensive observations of *transitions* of species presence

Methodology:

- Link ecological networks with influence graph of Boolean networks
- Use *BoNesis* to *infer Boolean networks* being able to reproduce transitions
- Extract ecological networks from the influence graph
- Define *optimization criteria*: sparsity vs fidelity
- Apply with *different prior knowledge*, compare results

Protist community

Seminal protist experiment published by University of Sheffield (Weatherby, Law, Warran; 1998-2006):

Observed transitions

- 63 combinations of protist species have been tested and replicated (6x)
- Bacteria always present
- Measurements in time series; qualitative analysis by M. de Goër de Herve (2022) :

Dynamical properties

- Transitions are fully asynchronous (only one species disappears at a time)
- 4 steady states: (no survivor); B, P, BP
- From ABECPT (all), transitions are too fast to observe (uncertainty on possible transitions)

Boolean networks

-
- -
	- -
		- -

(c) Asynchronous dynamics with configurations as binary vectors

(d) Asynchronous dynamics with configurations as present species, assuming species A, B, C have index $1, 2,$ and 3, respectively

General objective for the inference

What do we want:

- 1. Boolean networks that are able to reproduce at least the observed transitions $\left| \right|$ find logic of presence/absence for each species that can explain the transitions
- 2. *minimize deviations* from observed transitions **S** models that predict as less as *unobserved transitions* as possible
- 3. sparse models: smallest (nb of edges) ecological networks

BoNesis

Ensembles of Boolean networks

Predictions

Gene selection Key regulations **Mutations**

BoNesis • Proof of concept on scRNA-seq data

Modeling hematopoiesis cellular differentiation processs

 $~\sim$ 4,800 nodes (proteins) $~16,000$ influences

DoRothEA TF-TF db
saezlab.github.jo/dorothea

1.5 million interactions between 1399 TFs and 27,976 target genes

BoNesis in a nutshell

enumerate solutions:

. . . .

for f in bo.boolean_networks():

```
dom = bonesis.InfluenceGraph(...)
data = f"init": {"A": 0, "B": 0, "D": 0},
 "marker": {"A": 1, "C": 1}
\mathcal{F}bo = BoNesis (dom, data)
x = \sim bo.obs("init") # cfg matching with init
y = \sim bo.obs("marker") # cfg matching with marker
bo.fixed(y) # y is a fixed point
x \ge y # exists trajectory from x to y
x \gg "fixedpoints" \land {bo.obs("marker")}
  # each fixed point reachable from x matches
  # with marker (have A=1 and C=1)
```
https://bnediction.github.io/bonesis

Modeling

- **O** Domain of Boolean networks
- \rightarrow influence graph / partially specified BN
- \rightarrow single BN (model checking/control)
- **2** Observations binarized
- \rightarrow can be partial
- **O** Dynamical properties
	- \rightarrow link configurations with observations
- \rightarrow trajectories, fixed points, trap spaces, mutants, ...

Solving

 $f_1(x) = \ldots$

 $f_n(x) = \ldots$

- Optimizations (BN size, error, ...)
- Different views of solutions
- \rightarrow Boolean networks (w/ or w/o diversity),
- \rightarrow Influence graphs, configurations, ...

Ecological networks vs Boolean networks

- A predates B means A has a negative influence on B, and B a positive on A
- positive loops: mostly to allow for persistent disappearance (e.g., $f_A(A=0, C=0) = 0$ and $f_A(A=1, C=0) = 1$)
- non-sufficiency of prey (dashed edges): deny some logic functions (e.g., $f_A(x) = A \wedge E \wedge \Box$)

Encoding in BoNesis

- 1. Domain of candidate Boolean networks:
	- either complete graph (zero knowledge), or subgraph of prior knowledge
	- additional structural constraints (acyclicity, sufficient trophies, ...)
- 2. Transitions that must be reproduced (fully-asynchronous)

```
with bo.scope reachability (max changes=1):
    for x, y in obs.edges():
        ~bo.obs(cfg of present(x)) >= ~bo.obs(cfg of present(y))
```
3. Optimization criteria (minimize non-observed transition + size of ecological network)

Protists case study, part 1: inference from zero knowledge

Let's assume nothing on the ecological network... except it must be acyclic

Zero-knowledge inference

Neutral: minimal model reproducing the observations; ZKMx: min deviation

Transitions of ZKM3

 4.3

Protists case study, part 2: integrating prior knowledge

only employ ecological interactions deemed possible by an expert

Prior trophic network from Weatherby, Law, and Warran

X UNSAT: T can survive alone, but not in presence of C or P Network is incomplete \blacktriangleleft

Extended prior trophic network

De Goër de Herve et al. (2022) proposed an extended trophic networks, coupled with potential competitions

... resulting transition graph

Discussion

Inferred ecological networks:

- Zero-knowledge models are already quite plausible (ZKM3 fully reflect the size of the species)
- One can prove that prior knowledge can be incomplete (and point where)

Inferred dynamical models

- Added transitions often complete *diamonds* (concurrent transitions)
- Less deviation (spurious transitions) = more complex logic/network S trade-off with the abstraction level: time/speed could also explain absence of transitions

 $\left| \right|$ importance of prior knowledge to *prevent* overfitting

Discussion

Pros:

- Easy to implement and quick to execute
- Flexibility on the specification/constraints

Limits / applicability to other case studies

- Small system; with large systems, we need to bound the complexity of the Boolean functions
- Competition vs predation can be tricky to distinguish from Boolean rules
- Would be nice to try other systems / compare with other tools (LFIT?)
- BoNesis supports reachability, steady state, and control properties: handle more usual ecological data?
- BoNesis restricted to locally-monotone BNs; WiP to non-monotone