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Context, general motivation

e From observed (qualitative) change of species abundances, generate
hypotheses on the underlying ecological network

e Fcological network: trophic (predation) + competition

e Network inference: take into account prior expert knowledge



Approach
Application:

e Protist system with 6 species
e Extensive observations of transitions of species presence

Methodology:

e Link ecological networks with influence graph of Boolean networks

e Use BoNesis to infer Boolean networks being able to reproduce transitions
e Extract ecological networks from the influence graph

e Define optimization criteria: sparsity vs fidelity

o Apply with different prior knowledge, compare results



Protist community

Seminal protist experiment published by University of Sheffield (Weatherby, Law,
Warran; 1998-2006):
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Observed transitions

e 63 combinations of protist species have been tested and replicated (6x)
e Bacteria always present

e Measurements in time series; qualitative analysis by M. de Goér de Herve
(2022):
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Dynamical properties
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e Transitions are fully asynchronous (only one species disappears at a time)
e 4 steady states: _ (no survivor); B, P, BP

e From ABECPT (all), transitions are too fast to observe (uncertainty on possible
transitions)




Boolean networks
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General objective for the inference
What do we want:

1. Boolean networks that are able to reproduce at least the observed transitions
=] find logic of presence/absence for each species that can explain the
transitions

2. minimize deviations from observed transitions
= models that predict as less as unobserved transitions as possible

3. sparse models: smallest (nb of edges) ecological networks



BoNesis
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Qualitative interpretation
Markers

Ensembles of
Boolean networks

BoNesis - generic BN synthesis engine
- Symbolic Artificial Intelligence,
automatic reasoning (ASP)

- Scalable to real-world data (X,000 genes/cells)
- Open source (CeCiLL/GPL)

Predictions

Gene selection
Key regulations
Mutations



BoNesis e Proof of concept on scRNA-seq data
Modeling hematopoiesis cellular differentiation processs
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Boolean dynamical properties
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Model variability analysis



BoNesis in a nutshell

data = {
"{tnitt": {"A": O, "B": 0, "D": 0},
"marker": {"A": 1, "C": 1}

}

bo = BoNesis(dom, data)

X = ~bo.obs("initt") # cfg matching with intt

dom = bonesis.InfluenceGraph(...) ./ . j/j

y = ~bo.obs("marker") # cfg matching with marker
bo.fixed(y)
# exists trajectory from x to y
~ {bo.obs("marker" )}

# each fixed point reachable from x matches :
# with marker (have A=1 and (C=1)

# enumerate solutions:
for f in bo.boolean _networks():

# vy 1s a fixed point
X >= Yy T
x >> "fixedpoints” :

folz)=...

https://bnediction.github.io/bonesis

Modeling

® Domain of Boolean networks
- influence graph / partially specified BN
- single BN (model checking/control)

® Observations binarized
- can be partial

© Dynamical properties
- link configurations with observations
- trajectories, fixed points, trap spaces,

mutants, ...

Solving

e Optimizations (BN size, error, ...)

e Different views of solutions
- Boolean networks (w/ or w/o diversity),
- Influence graphs, configurations, ...



Ecological networks vs Boolean networks

WLW Prior

e A predates B means A has a negative influence on B, and B a positive on A
e positive loops: mostly to allow for persistent disappearance

(e.g., faA(A=0,C=0)=0and f4(A=1,C=0) =1)
e non-sufficiency of prey (dashed edges): deny some logic functions

(e.g., fa(x) =AANE AL




Encoding in BoNesis

1. Domain of candidate Boolean networks:
e either complete graph (zero knowledge), or subgraph of prior knowledge
e additional structural constraints (acyclicity, sufficient trophies, ...)

2. Transitions that must be reproduced (fully-asynchronous)

with bo.scope reachability(max changes=1):

for x, y 1n obs.edges|() :
~bo.obs (cfg of present(x)) >= ~bo.obs(cfg of present (y))

3. Optimization criteria (minimize non-observed transition + size of ecological
network)



Protists case study, part 1: inference from zero
knowledge

Tune sais rien, Jean Neige

Let’'s assume nothing on the ecological network... except it must be acyclic



Zero-knowledge inference

Neutral: minimal model reproducing the observations; ZKMx: min deviation

WLW Prior Neutral (deviation: 81)
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Transitions of ZKM3
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Protists case study, part 2: integrating prior
knowledge

only employ ecological interactions deemed possible by an expert

-



Prior trophic network from Weatherby, Law, and Warran

WLW Prior

Y UNSAT: T can survive alone, but not in presence of C or P

= Network is incomplete



Extended prior trophic network

De Goér de Herve et al. (2022) proposed an extended trophic networks, coupled with
potential competitions

GeA Prior GeA best fit (deviation: 34) ZKM3 (deviation: 18)
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... resulting transition graph
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Discussion
Inferred ecological networks:

e Zero-knowledge models are already quite plausible (ZKM3 fully reflect the size
of the species)
e One can prove that prior knowledge can be incomplete (and point where)

Inferred dynamical models

e Added transitions often complete diamonds (concurrent transitions)

e Less deviation (spurious transitions) = more complex logic/network
=1 trade-off with the abstraction level: time/speed could also explain absence
of transitions
=" importance of prior knowledge to prevent overfitting



Discussion
Pros:

e Easy to implement and quick to execute
e Flexibility on the specification/constraints

Limits / applicability to other case studies

o Small system; with large systems, we need to bound the complexity of the
Boolean functions

e Competition vs predation can be tricky to distinguish from Boolean rules

e Would be nice to try other systems / compare with other tools (LFIT?)

 BoNesis supports reachability, steady state, and control properties: handle more
usual ecological data?

 BoNesis restricted to locally-monotone BNs; WiP to non-monotone






